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Abstract 

 Accurate combat identification is critical to military interactions.  Laser radar for vehicle 

identification is a rapidly developing field that could possibly assist in combat identification by 

providing information about operating characteristics of a particular vehicle based on measured 

vibrations. This research focuses on simulated laser radar data collected from mounted 

vibrometers on idling vehicles.  An approach to identify vehicles using nonlinear autoregressive 

neural networks for classification is developed and employed.  The resulting algorithm combines 

the trained neural networks across three dimensions of vibration readings.  This method offers 

improved performance over literature in successfully identifying a vehicle through vibration 

measurements alone.   
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AUTOMATIC TARGET RECOGNITION USING NONLINEAR AUTOREGRESSIVE 

NEURAL NETWORKS 

I. Introduction 

Background 

Laser radar (LADAR) for vehicle identification is a rapidly developing field that could 

possibly assist in combat identification by providing information about operating characteristics 

of a particular vehicle based on measured vibrations.  Research has been focused on the 

identifying critical features based upon the frequency domain characteristics in order to obtain a 

classification.  This research expands on the body of knowledge and provides an alternative 

approach rather than the classic Principle Component Analysis (PCA). 

Problem Statement 

The ability to quickly and accurately identify objects on the battlefield is an essential 

ability for warfigthers.  Remote LADAR vibrometry remains an emerging field of study for 

classification purposes.  Target identification from vibrometry data could enable operators to 

distinguish between unique vibrations signatures.  Figure 1 illustrates one possible 

implementation of LADAR vibrometry for automatic target recognition (ATR). 

 

Figure 1  Laser Radar Automatic Target Recognition, taken from (Jameson, 2007) 
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Each vehicle vibrates different depending on the type of engine, the engine state, and 

characteristics of the vehicle’s body.  Herein, three dimensional simulated LADAR vibrational 

data will be used.  Trained autoregressive neural networks using time-series vibrations will be 

developed and employed for quick and accurate prediction of the objects of interest with results 

exceeding previous work in this field. 

Objectives 

The objective of this thesis research was to create a classification algorithm using neural 

networks to identify vehicle types based upon simulated laser vibrometry data. 

Hypothesis 

The hypothesis of this research is entailed in a proof of concept that a time series input 

could be used by neural networks to distinguish between previously known vehicles.      

Assumptions 

 There are not many assumptions necessary in moving forward with solutions for this 

problem.  The main underlying assumption was the simulated laser vibrometry data collected via 

accelerometers during data collection mimicked the actual signal a LADAR system would 

retrieve on the same vehicle.  Another assumption was all sensors collecting data during a 

particular run on a specific vehicle were started and stopped at simultaneous time periods.   

Limitations 

This research is limited to three specified vehicles of interest.  More vehicles could be 

added to the algorithm with more data but that would require many of the steps followed to be 

re-accomplished.  
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Implications 

This proof of concept demonstrates it would be possible to perform automatic target 

recognition using the time series data from vibrations obtained while a vehicle of interest is 

operating.  Although other techniques have produced significant results, the algorithm developed 

here adds to the body of knowledge moving forward. 

Format 

This thesis is divided as such, Chapter II examines prior literature in this area, Chapter III 

explains the methodology used to develop the classification algorithm, Chapter IV lists the 

results obtained by the final model, and Chapter V summarizes this research and provides insight 

into future research areas. 
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II. Literature Review 

This chapter examines prior work in artificial neural networks (ANN), as applied to time 

series, non-time series data, and LADAR vibrometry for automatic target recognition (ATR).  

Time series and non-time series of data pose separate problems to the analyst and must be 

processed differently.  With respect to time series data there is a large body of work specifically 

focused on stock and commodity market prices (Kaastra & Boyd, 1996) with a goal of 

discovering non-linear relationships via ANNs which might provide an operational advantage 

over competitors.  For categorical input data, discovering differences and/or patterns amongst the 

samples in order to predict the class of a new sample continues to be the main focus.  ANNs have 

been applied to many fields including business (Young, Bihl, & Weckman, July 2013) (Kuo, 

Chen, & Hwang, 2001) (Azcarraga, Hsieh, & Setiono, 2008) (Phillips, Phillips, & Hurrell, 2013), 

politics (Beck, King, & Zeng, 2000), medicine diagnosis (Burke, et al., 1997) (Lisboa, 2002) 

(Temurtas, Yumusak, & Temurtas, 2009) (Skidmore, 1991) (Laine, Bauer, Lanning, Russell, & 

Wilson, 2002) (Ubeyli, 2009), insurance (Speights, Brodsky, & Chudova, 1999), ecosystem 

modeling (Young, et al., 2011), and sports statistical analysis (Young & Weckman, 2008) 

(Loeffelholz, Bednar, & Bauer, 2009), among other fields as noted by Paliwal and Kumar (2009) 

and Zhang (2000). 

In addition to an overview of ANNs, the literature review analyzes the current state of ATR 

research. ATR, in a military context, exists to identify enemy, friendly, and neutral objects 

(tanks/buildings/personnel) in order to limit fratricide and increase combat effectiveness.  

Various techniques attempt to correctly identify objects of interest but this research reviews 

current state of the art ATR performed using LADAR vibrometry.   
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Data Background  

Time Series 

 A vector of past observations from a specific time interval is an example of a time series.  

For example, monthly stock prices from 2000 through 2012 would provide 13 years of monthly 

stock prices, or 156 values organized in sequence from oldest time point to newest time point.  

To be consistent, time series data vectors are generally collected at equal time intervals between 

observations.   

ANN Introduction 

Biological nervous systems inspired artificial neural networks, with the overarching goal of 

ANNs to map a relationship between specific inputs to a particular target output (Young et al., 

July 2013).  To accomplish this, an ANN consists of inputs, outputs, hidden layers, and hidden 

layer nodes and the connections between these layers and nodes operating in parallel, see Figure 

2   

 

Figure 2  Standard Artificial Neural Network, taken from (Ivry & Michal, 2013) 
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Building a General ANN 

ANNs are supervised classification methods which involve a user configuring and training a 

given ANN to identify an input pattern as a member of a predefined class or output (Jain, Duin, 

& Mao, 2000).  Computers train a neural network in order to perform a function by adjusting the 

values of the connections between elements.  This flexibility allows ANNs to perform complex 

functions in fields to include pattern recognition, identification, and classification. 

The ANN training stage minimizes the error of the classified outputs by changing the 

connection weights through the process of backpropagation, which is one method of training, 

until it has reached a global minimum; occasionally, the minimum is a local one and hence 

changes in the development should be made. Network architecture plays an important role for 

neural network classification performance; the optimal topology will depend upon the problem at 

hand.  With an understanding of the problem, selecting the number of hidden layers, units, and 

feedback connections can be incorporated into the network architecture (Duda, Hart, & Stork, 

2001).  Training a network can be described as moving down an error surface which takes place 

by weight adjustments during the learning phase.  The standard backpropagation network, 

proposed by the PDP group (McClelland & Rumelhart, 1988), employs the steepest descent 

algorithm for adjusting the weights.  Once trained, the ANN can predict the classification of a 

new sample with an inherent error rate.  Selecting and adjusting the complexity of the network 

remains an issue in the use of neural network techniques.  Kolmogorov and Hecht-Nielsen 

posited the sufficiency of one hidden layer for properly posed problems (Young et al., July 

2013). However, while most problems can be solved using one hidden layer, complicated non-

linear and/or non-separable problems may require multiple hidden layers (Young et al., July 
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2013).  Conversely, the training data cannot be learned adequately if too few parameters are 

implemented (Duda et al., 2001).   

In ANN model development, the learning process helps to identify the optimal weights to 

assign at each layer and interaction between nodes.  At first, the data is divided into training, 

testing, and sequestered validation sets; various heuristics exist for allocating data into these 

groups (Young et al., July 2013).  One issue to avoid is possibly training and testing over the 

same observations (Zhang, 2007); therefore, the cross validation methods are common.  Training 

data presents the first signals into the net which are passed through to determine the output at the 

output layer.  At this point, the output is compared with the target values and any difference 

corresponds to an error (Duda et al., 2001).  The network’s goal is to minimize the error between 

the target values and calculated outputs; until some threshold of error is obtained the ANN will 

iterate this process and adjust the network’s weights after each step.  Two independently selected 

subsets of the training data which were removed before learning are used to perform validation 

and testing.  The validation set decides when to stop the training; the test set is examined after 

model building and used to evaluate the performance of the network.  

ANN Pattern Recognition 

A two-layer feed forward network remains the standard network used for pattern 

recognition.  A sigmoid transfer function connects the nodes in both the layers of the ANN.  To 

process through a network the data is multiplied by the connections weights added to a given 

bias then sent through a sigmoid transfer function before being sent to the next layer.  The 

process repeats itself in the next layer to produce an output.  The user defines the number of first 

layer (generally defined as the hidden layer) nodes and the number of second layer (output layer) 

nodes equals the number of classification states.  Figure 2 depicts a standard network with four 
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inputs, five first layer nodes, and one output layer node, a general neural structure as first 

described by McCulloch and Pitts in 1943 (McCulloch & Pitts, 1943).  ANNs can also take 

different forms than the two-layer feed forward network described above, multiple hidden layers 

are permissible but usually not optimal (Young et al., July 2013), additionally feedback and 

feedforward aspects are possible.  A recurrent ANN, Figure 3, differentiates itself from the feed 

forward network in Figure 2 because it has at least one feedback loop contained in its structure.  

In other words, the output of one state provides an input into another state.   

 

Figure 3  Recurrent Neural Network, taken from (O'Brien, 2012) 

The recurrent ANN results in a nonlinear dynamic behavior because the dependent 

structure of the neurons (Haykin, 1994).  Recurrent neural networks provide the ability to model 

non-linear dependencies and can be used with time series data sets to enable feedback loops.  

These feedback loops help during the training phase where the network learns from its mistakes 

while optimizing the performance.  In their most general form, researchers have found greatest 

use of recurrent networks in time series prediction and are effective in learning time-dependent 

signals whose structure varies over short periods (Duda et al., 2001).   
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ANN Classification 

System state classification continues to remain an important facet of human nature; whether 

classifying a road as safe or dangerous or a business decision as high or low risk, we must use 

the information at hand and make a decision.  Generally, these decisions are made in context of 

prior knowledge which aids in the classification.  The Bayesian methodology of using prior 

outcomes to calculate a probability of some outcome plays a role in these decisions.  In 

engineering and mathematics, traditional statistical classification works well when the 

underlying assumptions are met (data independence, distribution assumptions, linearity, and 

etc.); however, issues arise when a problem is non-linear or fails to meet an underlying 

assumption. ANNs do not make distribution assumptions about data and can provide a flexible 

tool to tackle these more difficult problems.   

ANNs are data driven self-adaptive methods.  They can adjust themselves to the data without 

any explicit specification of functional or distributional form for the underlying model (Zhang, 

2000).  The self-adaptive nature of neural networks allows them to fit into any size and shape 

hole as long as it is provided with enough data points to adapt to.  Without having to fit any of 

the standard classic assumptions of normality or independence this methodology separates itself 

into a different playing field.   

Despite ANN’s ability to perform either classification or prediction, Zhang (2000) claims 

that classification research remains the most researched topic of ANNs.  The research contained 

in this paper furthers Zhang’s claim and the body of work surrounding neural networks and state 

classification. 
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Feature Extraction versus Feature Selection 

The degree of difficulty of the classification problem depends on the variability in the feature 

values for objects in the same category relative to the difference between feature values in 

different categories.  The variability of feature values for objects in the same category may be 

due to complexity or due to noise (Duda et al., 2001).  Research has focused on feature or input 

selection attempting to determine the most important variables to inject into the model and 

discard noisy features (Verikas & Bacauskiene, 2002).  One technique to conduct feature 

selection includes the processing of the resulting signal-to-noise ratio (SNR) provided by the 

features selected.  A feature with the lowest SNR measure will be discarded before the neural net 

is re-trained.  This process repeats itself, removing features in a step-wise fashion until a 

significant fraction of the classification error is calculated.  At which point the most recently 

removed feature would be re-instated and the final list of features would be solidified (Bauer, 

Alsing, & Greene, 2000).  The ANN SNR feature selection approach performs favorably 

compared to other backward selection methods for ANNs (Verikas & Bacauskiene, 2002), and is 

applied to current research problems (Ubeyli, 2009) (Ubeyli, 2008) (Bihl & Bauer, to be 

submitted: 2014). 

The ability of a neural network to correctly classify objects into their true classes is measured 

by the classification error rate.  Minimizing the percentage of new objects incorrectly assigned 

(assigned to the wrong category) remains the goal in ANN creation and design.  Another 

technique includes minimizing the risk or total expected cost of misclassification.  This can be 

incorporated in the training phase of the neural network if the cost of false positives and false 

negatives are known. 
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Given the recent economic crisis experienced and the harm caused the global assets, 

market practitioners studied the ability to predict future asset prices.  One paper, (Pacelli, 

Bevilacqua, & Azzollini, 2011) aimed to analyze the ability of ANNs to predict the behavior in a 

highly liquid (high efficiency) market, the Euro/US dollar exchange rates.  Pacelli et al. (2011) 

assumed two hypotheses when conducting their research.  The first hypothesis assumed that the 

process of pricing in financial markets was not random; if this proved to be invalid, then they 

demonstrated that no model could predict prices.  Their second hypothesis stated the degree of 

information efficiency of the financial markets is not strong or semi-strong; if the second 

hypothesis could be proved invalid then all relevant information is instantly incorporated into the 

pricing of financial products yielding the act of predicting unnecessary (Pacelli et al., 2011).  At 

first, Pacelli et al.’s (2011) list of input variables included over forty possible financial data sets 

which could provide predictive ability; they eliminated any variables which were collected only 

monthly, and among the daily collected variables, any variable with a Pearson correlation 

coefficient with another variable above a threshold was removed. These two criteria left only 

seven input variables for the neural network.  Once they standardized their data and performed 

trial and error to determine a viable network topology the researchers arrived at a conclusive 

result.  Through analysis of the data it is possible to say that the ANN model developed can 

predict the trend to three days of Euro/USD exchange rate.  This predictive ability from the ANN 

demonstrates both their assumptions were valid.  Their analysis provided evidence to support 

their hypotheses that the processes of pricing in financial markets are determined by interaction 

between actors and relationships between variables of a nonlinear nature (Pacelli et al., 2011). 
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ANN Time Series Prediction 

ANNs can also be used for prediction; for this research, we are interested in predicting time 

series values to predict future values or impute missing values.  Similar to pattern recognition 

neural networks, time series ANNs can either predict the next value or a set of future values.  

Different structures for time series ANNs exist and implemented in various ways given a specific 

problem and its underlying data.  In one type of time series problem, a user predicts future values 

of a time series y(t) from past values of that time series and past values of a second time series 

x(t).  This ANN is referred to as a nonlinear autoregressive with exogenous input (NARX) 

network (NARXNet) (Beale, Hagan, & Demuth, 2013).  A NARXNet follows the mathematical 

formulation:  

y*(t) = f(y(t –1), ..., y(t – d), x(t –1), ..., x(t – d)) 1  

where y* is the predicted value at time t, x is an exogenous variable’s value at a given time, f 

represents the neural network, t is the time of data collection, and d is (Beale et al., 2013).     

In operation, a trained NARXNet will predict future values of a stock, based on such 

economic variables as company earnings and trading volatility.  When created to represent 

dynamic systems, a NARXNet can also execute system classification.  Another time series 

problem is similar to the NARXNet and involves two series, but without information of previous 

values of y(t) (Beale et al., 2013).  This input-output model can be written as: 

y(t) = f(x(t –1), ..., x(t –d)) 2  

Compared to the input-output model, the NARXNet which “will provide better predictions than 

input-output model, because it uses the additional information contained in the previous values 

of y(t)” (Beale et al., 2013).  However, there may be some applications in which the previous 
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values of y(t) would not be available.  Those are the only cases where you would want to use the 

input-output model instead of the NARXNet. 

A third type of time series problem involves only one series, the future values of a time 

series being predicted using only past values of itself.  Referred to as nonlinear autoregressive 

network (NARNet) this prediction technique can be written as where d is the lag desired: 

y(t) = f(y(t –1), ..., y(t – d)). 3  

Figure 4 depicts the NARNet’s structure where a predetermined number of time periods are used 

as an input for the network to predict the next time step value Figure 4. 
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Figure 4  Nonlinear Autoregressive Neural Network 

Long term Forecasting 

Forecasters are not simply interested in a one period ahead prediction but a long-term 

prediction of time series. There are several choices to build long-term prediction models, the 

direct and the recursive prediction strategies (Sorjamaa, Hao, Reyhani, Ji, & Lendasse, 2007).  

However, long-term prediction faces increasing uncertainties from various sources, including the 

lack of information about  a system’s current state. 

The recursive strategy appears to be the most intuitive as it views the predicted values as 

known data to predict the next ones; for example, the fifth predicted values will use the first 

through fourth predicted values as well as the known values of the data series to predict the sixth 

predicted value.  The accuracy of this strategy deteriorates significantly when the number of 

predicted values exceeds the number of inputs (as you move farther from truth data).   

The direct model, on the other hand, does not contain this degradation as it will produce 

the predicted values at the same time instead of iteratively. The direct model increases the 

complexity but more accurate results are achieved (Sorjamaa et al., 2007).  
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Nonlinear Autoregressive with Exogenous Input Network 

 The NARXNet methodology uses the time series of interest as a main input as well as 

other user selected seemingly unrelated data streams to forecast future data points.  When 

applied to time series prediction, the NARXNet is designed as a feedforward time delay neural 

network (TDNN) without any feedback loop (Haykin, 1994).   

Researchers implement NARXNets in various fields to achieve predictions of future 

values;  Lee and Chang (2009) employed a NARXNet for studying the thermodynamics in a 

pulsating heat pipe (PHP), a type of cooling device which contains unsteady flow oscillations 

formed by the passing non-uniform distributions of vapor plugs and liquid slugs.  A NARXNet 

used to represent discrete time multi-variable non-linear stochastic systems is derived from the 

neural network, as shown in Figure 5.   

 

Figure 5  NARXNet, taken from (Lee & Chang, 2009) 

The NARXNet consists of an input layer with n nodes, a hidden layer with m neurons 

and an output layer with j nodes.  Each of the input nodes is connected to all the neurons in the 

hidden layer with different weights, and each of the hidden layer nodes is connected to the output 

node through different weights as well. For instance, the m-th output node is connected to all 
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nodes in the hidden layer with different weighting.  The NARXNet model can be expressed by 

equation 1 above.  At the input layer, the input values are not restricted to single values but, in 

the time series case, a vector of past values of a predetermined length.  Varying the length of the 

input vectors allows the system to achieve the best performance.  As stated previously the 

predicted values of the time series will drift farther from the actual values and induce more error 

as the input vectors’ contain less values than the desired output. 

Lee and Chang (2009) conducted numerous experimental designs before they reached 

their desired NARXNet model.  The designs can vary significantly as they decided what 

variables and time series to include or exclude.  In conclusion Lee and Chang (2009) were 

satisfied with their approach and believed they proved the NARXNet approach could establish 

appropriate models for time series successfully. 

ANN Time Series Implementation 

As discussed above, many researchers use time series networks to predict and forecast 

future values of the time series.  In fact, the US government in 1989 “embarked on a five-year, 

multi-million dollar program for neural network research, but financial services organizations 

have been the principal sponsors of research in neural network applications” (Trippi & DeSieno, 

1992).  Researchers in Germany attempted to implement a NARXNet to predict future price 

movements of natural gas, Busse et al. (2012) discovered that “the best performance could be 

achieved selecting only five input factors (the temperature forecast four days ahead, the natural 

gas spot prices of the three major hubs and the exchange rate USD/EUR”.  The number of lag 

periods to include along with the inclusion or exclusion of external data sets will result in the 

NARXNet’s structure and its performance.  However, every researcher must tailor their network 

to the problem at hand and vary the parameters to increase performance and minimize error.  
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Unfortunately, this process requires many iterations accompanied with patience and 

determination. 

Two studies, Surkan and Singleton (1991) and Odom and Sharda (1991), compared ANN 

models to multivariate discriminate analysis (MDA) models and found significant results.  

Surkan and Singleton (1991) discovered that an ANN outperformed their MDA model for bond 

ratings, with the ANN providing 88% correct classification compared with at most 57% by 

MDA.  In a separate analysis, Odom and Sharda (1991) created both ANN and MDA models for 

predicting corporate bankruptcy probabilities, with the ANN being over 20% more accurate than 

the MDA model.  Additional comparisons of ANNs to other classification methods which show 

benefits to ANNs, include Kurt et al. (2008), Dreiseitl and Ohno-Machado (2002), and Manel et 

al. (1999). 

Soman (2008) examined implementing NARXNet in his thesis at Rutgers University to 

forecast future values of currency trades.  Through Mathworks’ MatLab® software, this method 

iterated, varied, and optimized the structure of the time series neural network to provide the 

desired output.  Soman (2008) thereby created a model which could adapt to current information 

by selecting amongst multiple trained NARXNets to produce an optimal prediction; this research 

discovered that an adaptive strategy with multiple NARXNets performed better than a static 

NARXNet and standard implementation of technical indicators (linear regression, relative 

strength index, etc).   

Other published research proposed using neural networks to forecast the behavior of 

multivariate time series.  Chakraborty et al. (1992) modeled flour prices over an eight year 

period for the cities of Buffalo, Minneapolis and Kansas City via a neural network and compared 

their results to a standard linear statistical model.  Chakraborty et al.  (1992) implemented 
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various techniques to include create separate models for all three cities, one model using data 

from all three cities, and different experimentation with lag output predictions.  Regarding the 

lag output predictions, a multi-lag network used predictions of the network to predict the next 

time series value versus a one-lag model which only used the actual values to predict the next 

data point.  Improved performance resulted from the combined modeling approach for the 

presented data.  The researchers stated that the separate modeling gives poorer results than 

combined modeling because each series carries information valuable not only for prediction of 

its own future values but also for those of the other two series and the combined modeling 

training set contains three times as many observations as are available for each single modeling 

training set.  They claimed success in training the networks to learn the price curve for each of 

the modeled cities, and therefore could make accurate price predictions.  Results indicated that 

the neural network approach led to better predictions than the classic statistical model 

implemented (Chakraborty, Mehrotra, Mohan, & Ranka, 1992). 

Time series neural networks and ANNs in general are flexible frameworks for modeling a 

wide range of nonlinear problems.  Zhang (2003) states “one significant advantage of the ANN 

models over other classes of nonlinear model is that ANNs are universal approximators which 

can approximate a large class of functions with a high degree of accuracy”.  In fact, Zhang 

(2003) implemented a hybrid approach to forecast future values of a time series combining both 

a non-traditional Nonlinear Autoregressive (NAR) ANN and a more traditional autoregressive 

integrated moving average (ARIMA) to produce better results than the models produced 

individually.  Zhang (2003) concluded that when the linear ARIMA and the NARNet were fused 

they captured a greater degree of the relationship in the time series data.   
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In another example, Chow and Leung (1996) studied the ability to forecast the electric 

load based on weather compensation; hypothesizing that a NAR neural network could classify 

the nonlinear time-series and provide accurate forecast over time for the Hong Kong Island 

electric load profile.  This weather compensation neural network proved to accurately predict the 

change of electric load consumption on day ahead.  This methodology calculated more accurate 

load forecast with a 0.9% reduction in forecast error (Chow & Leung, 1996). 

ANN Ensembles 

Ensembles are combinations of classifiers. ANN ensembles ensure one is not limited by 

one neural network and its pre-determined structure; ensemble methods have therefore been 

devised in ways to fuse multiple ANNs together.  Through this approach the inherent uncertainty 

in on network can be limited by combining the output with other networks.  An ensemble, or 

classifier fusion, provides a flexible way to link multiple networks.  Various ensemble 

constructions include multiple network architectures, same architecture trained with different 

algorithms, different initial random weights, or even different classifiers.  Researchers have also 

suggested the combination of neural networks with traditional statistical classifiers.  Kuncheva et 

al. (2003) show that the majority vote with dependent classifiers can potentially offer a dramatic 

improvement both over independent classifiers and over the individual accuracy of one ANN.  

Leap et al. (2008) demonstrated several fusion techniques were robust to correlation when they 

controlled for the level of correlation at various levels and that fusion always performed no 

worse  than the worst classifier.  Turnquist (2011) examined classifier fusion for hyperspectral 

imagery data. Although the mentioned fusion methods are parallel in nature, where multiple 

classifier outputs are fused, series fusion is possible as examined by Friesen et al. (2013) where 

the output of one classifier became the input of another. The research performed with ensemble 



www.manaraa.com

 

20 

 

neural networks suggest that the researcher should not be satisfied with a structure until various 

methods are attempted and these models are brought together because, similar to human nature, 

diversity brings strength. 

ANN with Vibrometry Data 

Of most interest to this thesis, the current research into implementing ANNs from 

vibrometry sensors.  An emerging technique, using the vibrations as they bounce off an object in 

order to classify that object into a particular state has seen some interesting progress.  One area 

where researchers from the Georgia Institute of Technology have implemented this technique is 

with classifying electric utility poles as healthy or in need of repair (Stack, Harley, Springer, & 

Mahaffey, 2003).  Wooden electric utility poles span the United States and transport the electric 

power long distances from their source to the customer.  As time passes, the wooden poles, 

which comprise the majority of poles in the transmission and distribution network, will need to 

be replaced.  In order to determine if the pole has structural deficiencies and requires 

replacement, Stack et al. (2003) suggested using a helicopter equipped with acoustic equipment 

to measure the vibrations received from the telephone poles as the helicopter flew by.  The data 

set would then be passed through a trained neural network to classify the pole has healthy or 

deficient.  The researchers discovered that this technique could save both time and money when 

compared to the traditional, man-hour intensive, process to climb, inspect, and redo.  They have 

patented (Stack, 2003) their research and plan to implement their strategy across the expansive 

United States electric network. 

In another approach to combine vibrometry for measurement with neural networks for 

processing, Castellini and Revei (2000) proposed a methodology to detect, localize, and 

characterize defects in mechanical structures.  Using scanning laser Doppler Vibrometry 
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(SLDV), Castellini and Revei (2000) offers a non-intrusive technique to explore and evaluate the 

object under investigation.  Castellini and Revei’s (2000) methodology proved to be efficient to 

recognize defects and determine their depth in composite materials.  Not only applicable to 

metallurgic structures, Turkish researchers, Turkoglu et al. (2003) processed Doppler 

sonographic signals measured during patient heart tests to determine if any heart valve diseases 

were present.  The performance of this developed system proved to have a correct classification 

rate of 94% for abnormal and normal subjects.   

ATR State of Affairs 

Academic researchers who attempt to successfully classify systems overlap with military 

strategists wanting to identify targets.  ATR complements both fields of study and presents an 

important evolving area of study for all concerned.  Recent research in this field entails the 

processing and disposition of hyper-spectral images (HSI) (Smetek, 2007).   

Many agencies have undertaken the initiative to explore ATR using simulated vibrometry 

data obtained from vehicles (Dierking, Heitkamp, Roth, & Armstrong, 2012).  For the past 

decade various research studies have attempted to process and understand the data obtained from 

accelerometers during controlled experiments.  Multiple avenues were explored, to include in-

house government research and externally funded academic or contractor teams (Dierking et al., 

2012).     

These research teams reviewed two types of problems, identifying between vehicles and 

distinguishing engine types.  The latter problem was solved with a high degree of precision by 

multiple teams using both probabilistic neural networks (PNN) and FFNNs.  The three-class 

problem, identifying between three different vehicles, was attacked from various angles but none 

could reach the same level of precision as the engine classification problem.  The techniques that 
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were explored included power spectral densities, Multi Angle-Centered Discrete Fractional 

Fourier Transform (MA-CDFRFT), and PCA (Dierking et al., 2012).  The PCA analysis was 

implemented with hope of producing a dimensionality reduction before a Feed-Forward Neural 

Network (FFNN) would classify the targets.  While the training data set resulted in close to 

perfect classification ability, when a test data set entered the equation the results dropped 

significantly (Dierking et al., 2012). 

Crider and Kangas (2012) investigated ATR through four distinct, but related areas.  

Each approach has indicated that preliminary results being able to discriminate vehicle types 

with similar classes.  The analysis has been made based on small datasets, and the performance 

under field conditions has not been investigated. Multiple groups noted data shortages as a 

limitation (Crider & Kangas, 2012).  Although type discrimination has been anecdotally 

demonstrated, a significant amount of rework remains before a reliable & robust ATR system is 

realized.  

Literature Review Summary 

 A number of techniques have been implemented to enable ATR on simulated laser 

vibrometry data.  Time series neural networks were identified as an unexplored technique using 

the same data source as previous research.  Of the various types of time series neural networks 

presented above, the nonlinear autoregressive neural network proved to be the best structure to 

produce the best results.  The research presented in this paper focuses on the training, optimizing 

and implementation of NARNets to enable successful ATR. 
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III. Methodology 

This section discusses the development of the neural network models using the 

vibrometry data to predict the source based solely on the time series data collected by 

accelerometers.   

Scope and Data Description 

The Air Force Research Laboratory’s Sensor Directorate recently collected vibration data 

on three separate vehicles in various states of operation (Roth, 2013).  There were three vehicles 

of interest, labeled: A, B, and C.  Each vehicle had multiple spatially distributed accelerometers 

set-up during numerous replications to collect the vibration feedback from each vehicle.  Each 

sensor provided a measurement for a specific axis (either x, y or z) for the vehicle during the 

sample run.  The observations were collected at 10 KHz for 60 seconds which provided a time 

series stream of 600,000 points.  During each run, multiple sensors monitored the vehicle from 

the front and the rear (appropriately designated), this resulted in a simultaneous collection of 

multiple sensor observations on multiple axes.  For example, during run #13 on vehicle A, eleven 

sensors were fixed to various parts on the vehicle’s front and were distributed as such: three 

accelerometers on the x-axis (sensors 9, 19 and 20), four on the y-axis (11, 13, 22, and 23), and 

four on the z-axis (10, 14, 21, and 24).  This resulted in 48 different combinations of sensors 

which, when one sensor from each axis was combined, would provide a complete vibration 

reading.  Table 1 lists the sensors which collected data at different locations during the 

experimental runs.  Note, not every run had an identical sensor set-up and no data was available 

from the front of vehicle B in the x-axis.  In all there are 212 data sets from different sensors and 

run numbers, this provided the data necessary produce the final classification algorithm.     
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Table 1  Data Sets 
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Data Nomenclature 

 In order to follow the process of neural network training and model description it is 

imperative to first introduce the data’s nomenclature.  There were three vehicle models which 

were used to collect the vibration data.  On each vehicle were a number of sensors spread onto 

different parts of the vehicles.  A number of test runs were used to collect the vibrations under a 

single engine condition, stationary and idle, while each sensor collected data for one axis.  To 

ensure correct syntax throughout the collection process each data set was provided a unique 

designator.  Table 2 lists the data designators and provides an example of the data nomenclature 

by model (A, B, or C), location (F for front or R for rear), run number (ordinal), and sensor 

number (ordinal).   The example describes the type of vehicle, A, from run number 13 and sensor 

9, which was collected on the vehicle’s front in the x-axis. 

Table 2  Data Nomenclature 

Vehicle Model Location Run # Sensor # 

 
A F (Front) Multiple Multiple 

 
B R (Rear) 

  

 
C 

   Example: AF_13_9 
     

Classification Algorithm Methodology 

With the data provided, Table 1, the goal was to make a quick and accurate vehicle 

classifier model.  Given the universe of three vehicles, the prediction would be based upon the 

minimum reconstruction error (Mean-Squared Error (MSE)) from the best neural networks from 

each vehicle across the three axes.  MSE was defined to be the average of each target value 
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minus the network predicted value squared.  Equation 5 depicts the calculation of NARNet (as 

seen in Figure 4 performance using the MSE value. 

MSE= 

  2

1

( )n n

n

y t

n

t 
  

Where  ny t is the nth NARNet predicted value and  

nt is the corresponding target value 

4  

In order to make a prediction given a data stream it is necessary to train time series 

autoregressive neural networks to each sensor across the x, y and z-axis for each vehicle. With 

the resulting neural networks, one can then determine the best three neural network 

combinations, for a given axis, that produces the best true-positive rate across the data sets.  The 

true-positive rate is defined to be the sum, across all three vehicles, of the fraction of correctly 

identified vehicles given a known data source of all data sets of interest.  This can be pictured in 

Figure 6 as the sum of the green boxes.  This example demonstrates a true positive rate of 5.45.  

 

Figure 6  True Positive Rate Defined 

A seven step process, depicted in Figure 7, was followed in order to train, optimize, and 

validate the best model which ensured the highest true positive rate obtainable.   
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Step 1: entailed the data collection.  This step was performed outside of the scope of this 

research project.  

 Step 2: consisted of data processing.  The accelerometer sensor data from each run was 

processed into data vectors.  This step was performed by AFRL/RYY.   

Step 3: consisted of the neural network training.  Networks were trained to all the testing 

data sets with various neural structures.   

Step 4: consisted of finding the neural structure which had the best performance to the 

data set it was trained to with the goal of finding the best neural network for a given data set.   

Step 5 was an optimization step and found the combination of neural networks across a 

single axis that resulted in the best true positive rate.   

Step 6: Once the best networks were identified, algorithm verification was a spot check to 

ensure the classification algorithm worked sufficiently.   

Step 7: used the best combination of networks discovered during step 5 and implemented 

the majority voting rule on the validation segments of the validation data sets. 

Figure 7 depicts the seven step process, the corresponding data sets and the segments of 

those data sets used in the associated step. 
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Figure 7  Research Methodology 

Certain run numbers from each vehicle were separated for use as validation data when the 

neural networks were trained.  The data sets removed, including all corresponding sensors, were 

run numbers 13 and 14 from the front of vehicle A, run numbers 1 and 4 from the rear of vehicle 

A, run numbers 1 and 4 from the front of vehicle B, run numbers 13 and 14 from the rear of 

vehicle B, and run number 4 from the front of vehicle C.  Figure 8 shows the data sets used for 

training versus the data sets which were removed and used solely for validation.  
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Figure 8  Training and Validation Data Sets 
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Neural Network Training 

It was necessary to train multiple neural structures for each data set to determine the best 

set of characteristics which provided the lowest MSE (performance) for each data set.  Only a 

small section of the data was examined for the training, testing and validation, of the ANNs. To 

be analogous to an operational environment, it was ensured that the data used to train and test the 

ANNs were taken from observations occurring before the model validation set.  This length of 

data, rows 5,000 - 7,000, pulled from the 600,000 array was only 0.33% of the complete vector.  

Figure 9 depicts the various data segments of data used to train the neural networks, test for 

optimal neural network combinations and validate the resulting algorithm.  As noted, vehicle B 

was only of length 300,000; therefore, the model limited the validation run up to point 300,000 

to accommodate the all data sets. 

 

Figure 9  Data Set Segmentation 

Neural Structure Optimization 

For the training section of data, a network was trained with 5 different hidden nodes (5, 6, 

7, 8, and 9) and 9 various lag lengths, (50- 90, by 5s).  During the optimization routine, a neural 

network was trained to the data section given the hidden nodes and a lag length.  Once trained 

the MSE was compared to previous neural networks from the same data set.  The number of 

trained neural networks for each data set numbered 45 (5 x 9), each independent of one another 

consisting of different hidden nodes with different weights and various lag sizes.  The neural 
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network structure which produced the best performance was assigned to that data set.  This 

process was repeated for all the sensors, for each vehicle (front and rear) and each axis.   

Across all axes and vehicles, 128 data sets (34 from the AF, 18 from the AR, 5 from the 

BF, 24 from the BR, 43 from the CF, and 4 from the CR) were used for training neural networks.  

During the neural structure optimization routine 5,760 (128 x 45) neural networks were trained.  

According to Step 1 of Figure 7, only the best performing network from each data set, as 

calculated by the MSE, remained, resulting in 128 neural networks that were pushed forward into 

step 3.  

Figure 10 depicts the process of training neural networks for one data set, sensor 15 

which monitored the front of vehicle C during run #1.  As described above, the resulting neural 

networks were compared to neural networks with different characteristics (lag length, hidden 

nodes) trained to the same run number, sensor number and axis.  The neural network with the 

best performance was assigned to that data set.  In this example the neural network trained using 

6 hidden nodes and a lag length of 50 was the best structure for the data set CF_1_15. 

 

 

Figure 10  Neural Network Training 
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Network Combination Optimization 

Step 3 of Figure 7 identifies the combination of networks that provide the best true-

positive rate within each axis from a vehicle’s location.  For this procedure the three axes were 

separated and the front neural networks were treated as different sets than the neural networks 

trained to the vehicles’ rear.  With 128 networks, the goal was to down-select and only push 

forward the best 18 networks (9 front and 9 rear trained networks, 3 per axis).  For example, we 

will examine the x-axis networks trained to the rear data sets.  Figure 11 shows the highlighted 

area of interest. 

 

Figure 11  B Rear Training Data 

From the Rear data sets in the x-axis there were 4 networks from the rear of vehicle A, 6 

networks from the rear of vehicle B and 1 network from the rear of vehicle C.  This resulted in 

24 unique permutations of networks that must be tested.  Figure 12 shows the labeling of 

networks and the resulting permutations. 
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Figure 12  Neural Network Combinations by Axis 

To find the best neural network combination which resulted in the highest true positive 

rate two sections from the testing segment, as seen in Figure 9, of length 1,000 each, from one of 

the corresponding data sets, were passed through the combinations of neural networks.  The 

section of data was passed through the three neural networks all attempted to reconstruct the 

vehicles vibrational data provided their own, independent, characteristics (hidden 

nodes/weights/lag). Of the three neural networks the one which resulted in the lowest MSE was 

deemed to be the winner and the vehicle would be classified accordingly.  If the winning neural 

network was from the same vehicle then that data sample would be recorded as a true positive, 

otherwise a false positive was recorded.  Figure 13 depicts this process of pushing through two 

sections of data, both from the data set AR_10_12, through one combination of neural networks: 

(NetAR_10_12/NetBR_10_17/NetCR_2_24).   



www.manaraa.com

 

34 

 

In both examples NetAR_10_12 produced in the smallest MSE, resulting in a correct 

classification for both sections of data (9.9-10 seconds and 10-10.1 seconds). 

 

Figure 13  Neural Network Classification 

Figure 13 depicts this process for only one combination of neural networks from the rear 

of vehicles A, B, and C in the x-axis.  When each of the data sets were separately passed through 

this combination, the vehicle associated with the neural network which produced the smallest 

reconstruction error would result in a classification, if the classified vehicle was in fact the 

vehicle of origin then a correct classification would be achieved.  In the example shown in 

Figure 14, the combination that resulted in the highest true positive classification rate was the 

neural networks NetAR_10_12, NetBR_10_17 and NetCR_2_24.  These neural networks 

produced a 100% true positive rate in this example.  Figure 14 below shows all the neural 

network combinations and the resulting true positive rate when passed through their 
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corresponding training data.  The best combination in this example was the first combination 

resulting in a 100% correct classification rate.  . 

 

Figure 14  Neural Network Best Combination Rear X-axis Networks 

This procedure was completed for all the combinations of neural networks through each 

data set related to the same location on the vehicle and across the three axes.  As described this 

process resulted in the best combination of three neural networks (one from each vehicle) from 

the front and rear portion of the vehicle in the x-axis, y-axis, and z-axis.   

Table 3 lists the total number of combinations of neural networks tested in order to derive 

the best combination from each vehicle side and axis.  When testing the x-axis of the vehicles’ 

front, the BR networks were used to replace the missing data sets from BF. 

This process of determining the best combination of neural networks enabled the model 

to establish the relative reconstructive strength of each neural network when compared to the 

neural networks from the other vehicles in the same axis.  Ideally, a network trained to the front 

of vehicle A would produce a small MSE when given an AF data set and a large MSE when 
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given a BF or CF data set, and similarly for neural networks trained to the BF and CF 

respectively, which would enable the model to identify the correct vehicle by the smallest MSE.  

No preference was given to sensor or run number, meaning that the sensor location on the 

vehicle which may have been closer to the engine compartment was not given any higher rating 

than a sensor located far from the engine.  In addition, the characteristic of the run, which 

determined at what level the engine was operating, was similarly not given a preference.  Figure 

15 explains the neural networks and their trained data sets which resulted from the network 

combination optimization stage. 

Table 3  Neural Network Combinations per Axis 

 
Front Rear 

 
x y z x y z 

Combinations 540 576 1584 24 18 240 
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Figure 15  Neural Network Best Combinations 
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Data Set Classification 

In all, there were 18 neural networks, 3 networks from 2 locations (front/rear) in the 3 

axes (x, y, and z), identified and pushed forward to step 6 in the classification process, Algorithm 

Verification, Figure 16 lists the data sets which the 18 neural networks were trained.   

 
Figure 16  Neural Networks Associated Data Sets 

The data set AF_13_9 will be used to demonstrate vehicle classification from the best 

neural network combination.  Sensor 9 from run #13 for the AF monitored the x-axis; therefore, 

it will be pushed through the best combination from the front networks in the x-axis that resulted 

during the network combination optimization routine in order to derive a classification.  These 

networks are located in the top box of Figure 16:  NetAF_1_20, NetBR_4_23, and NetCF_1_19.  

Table 4 illustrates the resulting classification when a batch size of 100 of the AF_13_9, from the 

validation data segment, is pushed through the neural networks associated with the same vehicle 

side (front) and axis (x-axis).  NetAF_1_20 calculated the lowest MSE and therefore vehicle A 
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was declared the vehicle.  The original data set was from vehicle A resulting in a correct 

classification. 

Table 4  A Front Run #13 Sensor 9 Classification Example 

 

This process of classification was repeated for 1,000 batches, each of size 100.  Table 5 

shows the resulting number and percentage of correctly classified sections and incorrectly 

classified sections for sensor 9 during run #13 of the AF.  Over 77% of the sections were 

correctly classified.  Each data batch of 100 was only one hundredth of one second. 

Table 5  AF_13_9 Classification 

 

Data Exemplars 

To create a robust classification algorithm the goal was to use information from all three 

axes available.  The data was collected from accelerometers spread across the vehicle during a 

run number, each sensor monitoring a different axis of interest.  For proof of concept purposes, 

each sensor combination (one from each axis) for a given run number was treated as an 

independent data exemplar.  Table 6 lists run #13 for the AF and the sensors which collected data 
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during this run for each axis.  The assumption was made that the data was collected at the same 

frequency and started/stopped at the same time for each sensor.  As described in the table below, 

there were three sensors for the x-axis, four for the y-axis, and four for the z-axis.  In all, this 

resulted in 48 unique combinations (3 x 4 x 4) of sensors for run #13 of the AF.  

Table 6  Data Sets: A Front Run #13 All Sensors 

AF 

X-axis Y-axis Z-axis 

13_9 13_11 13_10 

13_19 13_13 13_14 

13_20 13_22 13_21 

 
13_23 13_24 

Classification Rule  

With three axes all contributing toward classification, decision fusion was examined 

through a majority voting scheme to determine the final vehicle classification.  If two or more 

networks from each axis claimed the same vehicle then that vehicle would be classified.  If none 

of the axis agreed (all axes had different vehicle neural networks win) then a non-declaration 

would be issued.   

Classification Verification 

Classification verification step used the training data sets but the validation segment.  

Most neural networks, because 128 were trained, did not make the final cut of 18 neural 

networks.  Therefore, although a neural network was trained to these testing data sets, over 80% 

of the data sets’ vibration information was not accounted for in any final model neural network, 

but was appropriately separated from validation data sets.  The validation data sets had no neural 

networks trained to them during step 3, as seen in Figure 7.   
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To examine the classification verification the AF run #13 will be examined.  Each of the 

combinations of run #13 was passed through the nine neural networks trained to the fronts of the 

vehicles in each axis.  The first data exemplar, sensor 13_9, 13_11, and 13_10 were each passed 

through the group of neural networks trained to their respective axis.  Data set 13_9, from the x-

axis, was passed to neural networks trained from AF_1_20, BR_4_23, and CF_1_19.  Data set 

13_11, from the y-axis was passed to neural networks trained from AF_7_11, BF_11_23, and 

CF_18_11.  Data set 13_10, from the z-axis was passed to neural networks trained from 

AF_1_10, BF_11_20, and CF_15_16.  Table 7 lists each data set within the specified date 

exemplar and associated neural networks which created the system classification.  This example 

shows an incorrect classification of the vehicle C even though the data provided came from the 

front of vehicle A. 

Table 7  AF Run #13 Classification Example 
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In the Table 7 example each neural network was given a batch size of 100 corresponding 

from the same time period from the respective data set.  The x-axis data was provided to the x-

axis trained neural networks.  Of the three x-axis trained neural networks, the vehicle from which 

the neural network that produced the lowest MSE would be classified from that data set.  The 

process was repeated for the y-axis and z-axis.  The respective data sets were sent to the 

matching axis neural networks.  The winning networks would result in an appropriate axis 

classification.  A majority voting rule was used to dictate which vehicle was classified.  In order 

for the vehicle A to be named from data sets AF_13_9, AF_13_11, and AF_13_10, then at least 

two A neural networks across the three axes would have to result in the best performance in its 

axis.  The neural network trained to the CF in the y-axis resulted in the best performance (lowest 

MSE) when compared to the neural networks trained to AF and BF when given a section of 

batch size 100 from the data set AF_13_11 and the neural network trained to CF in the z-axis 

resulted in the best performance when compared to the neural networks trained to BF and AF 

when given a batch size of 100 from the data set AF_13_10.  Vehicle A would not be named and 

instead the model would incorrectly classify C as the vehicle of interest no matter the result of 

the x-axis neural networks.  The green colored box represents the resulting neural network 

classification with the far right box listing the system classification of the C vehicle.   

Table 8 lists the resulting true-positive performance when sections of data from AF run 

13 of length 100 were given to the neural networks to classify the vehicle.  Run #13 of the AF 

had 48 unique data exemplars and each exemplar had 1,000 non-overlapping data sections 

classified, this resulted in 48,000 classifications.  
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Table 8  AF_13 Majority Voting Confusion Matrix – Front Networks 

 

 As seen from AF run 13 the true-positive percentage was 83.13%.  Over 83% of the time, 

two of three or all three neural networks trained to the AF resulted in the smallest MSE when 

compared to the neural networks trained to the BF and the CF for each axis.  This percentage 

resulted when front data exemplars were passed through the neural networks trained to the front 

data sets.  During real world operations, one would not know if the incoming data was from the 

front or the rear of a particular vehicle.  Table 9 lists the resulting classifications when the AF 

data exemplars were passed through the networks trained to the rear data sets. 

Table 9  AF_13 Majority Voting Confusion Matrix – Rear Networks 

 

 There was a 10% reduction in correct classification when the front data exemplars from 

the AF run #13 were passed through the rear networks versus the front networks.  In another 

example, data exemplars from the BR went from over 90% correct classification from the rear 

networks to a 0% correct classification from the front networks.   
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Methodology Verification  

 Verification and validation are two separate but necessary steps in the development of 

any model to ensure it meets the requirements and specifications. Methodology verification 

encompasses the question, “did I build the model correctly”.   

The model is verified in a step-by-step fashion.  First, the training phase was examined to 

determine if the neural networks were build properly.  MatLab® generates code after utilizing 

their graphical user interface NTSTool (Beale, Hagan, & Demuth, 2013).  This tool allows users 

to specify the characteristics of the various types of time series neural networks available.  After 

selecting the NAR network, the underlying code was automatically generated.  This code was 

manipulated which allowed for the training model to select the best neural structure for each data 

set.  This module was repeated for each data set of interest resulting in multiple trained NAR 

networks for each vehicle across all three axes.  The training phase and its associated NAR 

networks could be successfully verified in this regard. 

Attempting to find the set of networks for each axis from the two sides of the vehicles 

which would produce the best classification an optimization step was developed.  Figure 17 

defines the goal of this step given the 128 trained neural networks down to the best 18 networks. 

 

Figure 17  Step 5 Neural Network Combination Optimization 
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Step 5, the network combination optimization phase, could be verified easily as well.  

During this module, a section of code from the available data samples in a particular axis was 

sent through a combination of three networks, one from each vehicle from one axis, to generate 

the networks’ performance generate via MatLab®.  This was done separately for both areas of 

the vehicles, front and rear, and across all three axis.  Using ‘For’ loops and ‘If’ statements, 

MatLab® enabled this optimization phase to run without interference.  All that was required for 

user input was to define the data sets to send through the defined combinations of networks.  

Underlying this optimization was the routine that the smallest mean-square error resulted in a 

classification.  If the network which was derived from the vehicle provided resulted in the 

smallest performance metric, then a true-positive was recorded.  Each data set was sent through a 

specific combination of networks then the overall true-positive rate was recorded.  The 

combination of networks that maintained the best overall true-positive rate (which was calculated 

by summing across all the data sets) would be declared the best combination.  If two 

combinations resulted in a tie (the same true-positive rate) then the first combination tested 

would remain the winner.  Satisfied with the verification of the optimization phase, the testing 

phase proceeded.  

As described above in the methodology section, the classification model selected was the 

compilation of the six optimized network combinations.  A network combination consisted of 

three NAR networks trained to one axis each from a different vehicle.  The three network 

combinations from the vehicles’ front were combined to the three network combinations from 

the vehicles’ rear.  Together these six network combinations included a total of eighteen trained 

neural networks.  Similar to the testing phase, it was necessary to define all the combinations of 

sensors which encompassed a data sample.  Each vehicle consisted of multiple run numbers, 
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each with different characteristics and multiple sensors collecting data across different points of 

the vehicle.  To test the performance of the model, any combination of three sensors, one from 

each axis, from one part of the vehicle (front or rear) was defined as a data set.  For example, run 

number 13 of the AF had 48 unique combinations of sensors.  One data set included sensor #9 

from the x-axis, sensor #11 from the y-axis, and sensor #10 from the z-axis.  Together this data 

set was sent to the performance module to determine if the networks would identify vehicle A as 

the vehicle (a true positive), claim the vehicle of origin was a different vehicle, or determine it 

was unable to make a classification (each network in an axis claimed a different vehicle).  To 

step through the verification of the testing phase, it was possible to segment each performance 

module to verify the correct network was being identified as the winner.  Once this was 

accomplished, because the majority rule was in effect, the code was tasked to add together the 

number of identifications for each vehicle then pass the winning vehicle back to the testing phase 

via a confusion matrix.  Through iterations of various data sets, I was able to verify the model 

was built correctly.   

 There were two main functions created in MatLab® to process the data and produce an 

answer.  The first function, known as testnets, would load the data and the neural networks, then 

cycle through the various combinations of sensors and send these unique sets to the performance 

function.  Testnets would identify the vehicle of origin along with the neural networks associated 

with that vehicle.  This function would also pass to the performance function the incorrect neural 

networks, enabling the performance function to know if a true positive was obtained or a false 

positive was the result.  Every time the performance function was called, it would cycle through 

a pre-determined number of non-overlapping data batches.  Three performance functions were 

created to cycle through data batches of size 100, 500 and 1,000.   
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 Figure 18 lists how the data and neural networks were loaded into the testnets function 

before they were sent to the performance function.  

 

 

Figure 18  Testnets Load Data and Neural Networks 
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Figure 19 shows the process of testing a combination of data sets to determine the neural 

networks’ performance in correctly identifying run 10 of the AF.  Lines 59 through 61 set the 

unique combination of sensors from run #10 of the AR.  All unique combination of sensors be 

tested with the for loops.  Lines 62 through 79 set the known correct and the known negative 

neural networks.  All of the neural networks trained to vehicle A front or rear were clearly 

defined and set correctly.  In this example, line 82 calls the performance function TN500con.  

The 500 represents the performance function which tests non-overlapping batch sizes of 500.  

The result of the performance function is returned in the variable “confusion”.  This matrix 

embodied in it the number of true positive results, the number of false positive results 

(distinguished between each false vehicle) and the number of times no vehicle met the majority 

rule (all three axis had a neural network from a different vehicle with the best performance). 

 

Figure 19  Testnets Function Set Data and Neural Networks 
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 The variable “tracker” would maintain a running total of the number of false positives 

and true positives associated with each vehicle enabling the program to output a confusion 

matrix from every sensor combination within each run from the three vehicles. 

 The performance function of interest in this example (“TN500con”) had the data and all 

eighteen networks passed to it.  Through the transfer from one function to the other in MatLab®  

one is able to maintain the placement of each variable being transferred.  All of the networks 

associated with the data source were known as “netL” while all the incorrect networks were 

known as “netN”.  With eighteen networks, it was necessary to maintain healthy bookkeeping to 

ensure the function was build correctly. The data was passed from each function in the format of 

a cell.  This enabled large amounts to move within MatLab®  with ease.  Once the data was 

called in the TN500con it was necessary to reformat from a cell into a double.  The function 

“cell2mat” enabled this to occur.  Figure 20 depicts the function TN500 and the process of 

calculating the reconstruction error each neural network obtained from the data source.  Lines 27, 

32, and 37 were these reconstruction errors from the networks netL, netN, and netN2 

respectively.  In this example, knowing the source data was from AR, netL was the best neural 

network trained to the x-axis of the AF.  This reconstruction error calculation was repeated for 

all of the eighteen networks pass to the function TN500con. 
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Figure 20  Performance Function 

 With all of the eighteen reconstruction errors calculated, then the best performing 

network from each axis was identified.  Figure 21 shows the number of “If” statements required 

to determine a true positive within one axis (netL or netLo winning).  This process was repeated 

for all vehicles across the x, y and z axis. 
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Figure 21  True Positive Calculation 

 The trueposx, falsepos1x, falsepos2x variables allowed the function to keep track of the 

winning neural network from the x-axis.  Once this process was repeated for all the networks for 

each axis then the winning vehicle from each axis was determined.  To satisfy the majority rule 

one final calculation was required.  Figure 22 shows the final calculation which determined 

which vehicle was classified by the performance function for the particular batch of data. 

 

Figure 22  Majority Rule Calculation 
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 Line 384 shows that the variable teststat was set to zero after each iteration.  Teststat(1) 

was a true positive result while teststat(2) and teststat(3) were false positives.  The variable 

Confusion was an array which kept track of the total number of false positives and true positives.  

Line 396 would trigger the variable wrong3 to increase by 1.  This variable kept track on non-

declarations, or each axis resulted in a different vehicle being claimed. 

 As seen in line 18 of Figure 20, this process was repeated for a pre-determined number of 

times to allow for non-overlapping batches of the same data set to be tested.  This example 

shows the performance function, TN500con, cycled through 199 non-overlapping batches of the 

data set provided from the function of origin and sent back to the original function an array 

consisting of the number of true-positives, false-positives and non-declarations. 

 After reviewing the code line by line in a logical process, confidence in the classification 

process is achieved. 
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IV. Analysis 

Vehicle Classification Algorithm 

 Step 7, algorithm validation, encompassed the main objective of the problem, to correctly 

identify the vehicle of origin from vibrometry data in a time series format.  The successful 

identification of vehicles was evident (converging to 100% as batch size increases) when the 

vehicles’ front data was passed through the neural networks trained to the vehicle front.  The 

same was true, convergence to 100%, for the vehicles’ rear data when passed through the neural 

networks trained to the vehicle rear.  Unfortunately this classification rate does not hold true, 

with the majority voting rule, if vibrometry data from a vehicle’s front was passed through the 

neural networks trained to the rear data.  The reverse, data from a vehicles rear passed through 

the neural networks trained to the front, also resulted in a deceased correct classification rate. 

 In the field, an operator would theoretically not know if the data was from the vehicles 

front or rear and anything below a 50% classification rate would not help distinguish between 

vehicles.  Neither set of nine neural networks, trained to the front and the rear, appeared to 

perform better or at an acceptable level when given data from the opposite end of the vehicle 

from which it was trained. 

 An idea to alleviate this problem was to classify the data as front or rear data before 

sending it through the neural networks for classification.  This concept did not have acceptable 

results and other avenues were explored. 

 The next proposal was to use all eighteen neural networks, nine from the front and nine 

from the rear, in one classification algorithm.  In order to make this work, a data set was sent 

through the six neural networks trained to the same axis.  The x-axis data was processed by all 

the neural networks trained to the x-axis.  This included the two networks trained to vehicle A, 
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one from the front and one from the rear, as well as the two networks trained to vehicle B and the 

two networks trained to vehicle C.  Of these six networks the one with the best performance, no 

matter if it was a front or a rear trained network, would supply a vote to the classification of the 

vehicle.  The majority voting rule remained in place for this eighteen network method.  The best 

performing network from the x-axis coupled with the best performing networks from the y and z-

axis would create the classification.  The results from this eighteen network method proved 

superior to the previous results.  Figure 23 shows the addition of neural networks from the 

original algorithm to the proposed 18 network algorithm.  With this new algorithm, data set 

AF_13_9, from the x-axis, would be pushed through six networks, 3 trained to the front of the 

vehicles and 3 trained to the rear of the vehicles, for an MSE calculation.  The network with the 

smallest MSE would provide the vote from the x-axis towards the system classification.  In this 

example, the system classification changed from “C” when using nine networks to “A” when 

using all eighteen networks. 

 

Figure 23  Eighteen Network Classification Algorithm 
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When all data exemplars from A run #13 were classified by the eighteen network 

algorithm, and batch sizes of 100, overall system classification increased to 89.49% compared to 

83.13% (front networks) and 72.93% (rear networks).  Table 10 lists the confusion matrix when 

AF run #13, all data exemplars, were classified the algorithm using both networks. 

Table 10  AF Run #13 Classification Matrix – Both Networks 

 

Model Analysis 

 Once satisfied with the classification algorithm (using all eighteen networks), the 

validation data was examined for classification to determine the performance strength of the 

proposed classification technique using Nonlinear Autoregressive Neural Networks.  Figure 24 

lists the data runs from each vehicle used for classification validation. 

 

Figure 24  Validation Data Sets 

 Table 11 shows the confusion matrix when the neural networks classify data batch sizes 

of 100 from the vehicles’ front validation data.  The BF did not have any complete data sets for a 
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run across all three axis; therefore, any classification as the BF would be a false positive.  Still 

the results are consistent across both the A and the C vehicles.   

Table 11  Vehicle Front Validation Data Classification Matrix 

 

Table 12 shows the confusion matrix when the neural networks classify data batch sizes 

of 100 from the vehicle front validation data.  The CF did not have any validation data sets for a 

therefore any classification as the CF would be a false positive.  The BR vehicle was classified at 

61.41% which was much lower than any other vehicle classification using validation data. 

Table 12  Vehicle Rear Validation Data Classification Matrix 

 

 At 10 KHz a batch size of 100 data points is one hundredth of one second.  This small 

amount of time still provides a high true positive rate for the front and rear of the vehicles.  In 

fact, as one increases the batch size provided to the neural networks for classification, the correct 

classification rate increases across the board.  Table 13- Table 15 illustrate this increasing 

performance when larger batch sizes are provided.  Table 13 lists batch sizes of 500 while Table 

14 lists batch sizes of 1,000 for the rear validation exemplars.  Table 15 lists batch sizes of 500 

while Table 16 lists batch sizes of 1,000 for the front validation exemplars. 
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Table 13  Rear Data Batch Size 500 Matrix 

 

Table 14  Rear Data Batch Size 1,000 Matrix 

 

Table 15  Front Data Batch Size 500 Matrix 

 

Table 16  Front Data Batch Size 1,000 Matrix 

 

When the batch size is increased to 0.05 seconds (500 points) and 0.1 seconds (1000 points) the 

performance of the classification algorithm converges to 100% from the testing data set.   



www.manaraa.com

 

58 

 

Results 

 Table 17– Table 19 show the increasing performance when larger batch sizes are 

provided to the classification algorithm for all the validation exemplars. 

Table 17  Validation Data Classification Matrix Batch Size 100 

 

Table 18  Validation Data Classification Matrix Batch Size 500 

 

Table 19  Validation Data Classification Matrix Batch Size 1,000 

 

Summary 

 The 18 trained neural networks should all be used to compete for the overall 

classification.  When these networks compete, using a majority voting rule, then the system 

classification averages over 98%, when batch sizes of 1,000 are used.  Smaller batch sizes, 100 
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and 500, which correspond to one hundredth and five hundredths of one second respectively can 

be used as a quick look classification and still provide over 90% correct classification in most 

cases. 
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V. Conclusion 

Results 

 When compared to similar testing on the same data sets, the time series neural networks 

developed in conjunction with this thesis slightly outperform similar classification attempts.  

This indicates that utilizing the information contained in the time series of vibrations provides 

information that can be used to classify between vehicles.  Results appear to converge to a 100% 

correct classification for all vehicles types as larger data batches are provided to the classification 

algorithm.  When lengths of 1,000 (0.10 seconds) are used the overall correct classification rate 

achieved is 99.39%. 

Research Conclusion 

 This research provided to the body of knowledge already developed using vibrometry 

data for ATR.  This new technique could also be used as a building block for future research.  

One limiting factor during this research was the limitation of data.  Only vehicles at idle were 

used to train and validate the algorithm.  Of interest would be how various engine rotations per 

minute affect training and testing classification rates.  Could the algorithm developed here be 

used to correctly classify vehicles not operating at idle, would be the most obvious question to 

answer going forward. 

Future Research 

 Three areas appear to be available for future research.  As referenced above, the ability of 

this algorithm to correctly classify the three objects not operating at idle only would be one area 

to examine.  Another potential for future research could be the addition of more vehicles to the 

classification algorithm.  Although a re-look at the optimization of neural network combinations 
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might have to be re-examined and time consuming, the ability to add more vehicles to the 

algorithm could show the robustness of the technique amongst its peers.  Finally, this technique 

and developed algorithm could be used in conjunction with Principle Component Analysis and 

frequency domain transformations as a fusion of classifiers to achieve a more robust algorithm 

when combined.
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Appendix B 

Contact Information 

If anyone is interested in the code that was used in MatLab to perform all of the operations and 

analysis mentioned earlier, please refer to the contact information below.   

Dr. Kenneth Bauer 

Kenneth.bauer@afit.edu 

 

Marc R. Ward, Capt. (USAF) 

Marc.ward@us.af.mil 

 

 



www.manaraa.com

 

70 

 

Vita 

 

 Captain Marc R. Ward graduated from Venture High School in San Ramon, California.  

He entered the United States Air Force Academy (USAFA) in Colorado Springs, Colorado 

where he graduated with a Bachelor of Science degree in Operations Research and 

commissioned in 2008.  

 His first assignment was at Peterson AFB as a Test Analyst for the Air Force Operational 

Test and Evaluation Center, Detachment 4.  In May 2011, he served as the Enhanced Polar 

System Test Director for AFOTEC Det 4.  In September 2012, he entered the Graduate School of 

Engineering and Management, Air Force Institute of Technology.  Upon graduation, he will be 

assigned as a faculty member of the Department of Mathematical Sciences at USAFA.



www.manaraa.com

 

71 

 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

27-03-2014 
2. REPORT TYPE  

Master’s Thesis 
3. DATES COVERED (From – To) 

Oct 2012 – Mar 2014 
4.  TITLE AND SUBTITLE 

Automatic Target Recognition Using Nonlinear Autoregressive 

Neural Networks 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S 

Marc R. Ward Capt, USAF 

5d.  PROJECT NUMBER 

 
5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7.  PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 

  Air Force Institute of Technology 

 Graduate School of Engineering and Management (AFIT/EN) 

 2950 Hobson Street 

 WPAFB OH 45433-7765 

8.  PERFORMING ORGANIZATION 
    REPORT NUMBER 
 

AFIT-ENS-14-M-33 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Air Force Research Laboratory                        

Lt Col David M. Ryer, PhD 

2241 Avionics Circle                              

Wright-Patterson AFB, OH 45433 

david.ryer@us.af.mil 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 

AFRL/RYA 
11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Distribution Statement A Approved For Public Release; Distribution Unlimited 

13. SUPPLEMENTARY NOTES  

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. 
9.  ABSTRACT  

 Accurate combat identification is critical to military interactions.  Laser radar for vehicle identification is a rapidly developing field 

that could possibly assist in combat identification by providing information about operating characteristics of a particular vehicle based on 

measured vibrations. This research focuses on simulated laser radar data collected from mounted vibrometers on idling vehicles.  An 

approach to identify vehicles using nonlinear autoregressive neural networks for classification is developed and employed.  The resulting 

algorithm combines the trained neural networks across three dimensions of vibration readings.  This method offers improved performance 

over literature in successfully identifying a vehicle through vibration measurements alone.   

15. SUBJECT TERMS 

       Automatic Target Recognition; Artificial Neural Networks; Nonlinear Autoregressive Neural Network 
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF  

     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

84 

19a.  NAME OF RESPONSIBLE PERSON 
Dr. Kenneth Bauer 

a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 

 

U 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3636 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 

 


	Air Force Institute of Technology
	AFIT Scholar
	3-14-2014

	Automatic Target Recognition Using Nonlinear Autoregressive Neural Networks
	Marc R. Ward
	Recommended Citation


	tmp.1513089560.pdf.9hSzv

